Integrating Proteomics and Enzyme Kinetics Reveals Tissue-Specific Types of the Glycolytic and Gluconeogenic Pathways.
نویسندگان
چکیده
Glycolysis is the core metabolic pathway supplying energy to cells. Whereas the vast majority of studies focus on specific aspects of the process, global analyses characterizing simultaneously all enzymes involved in the process are scarce. Here, we demonstrate that quantitative label- and standard-free proteomics allows accurate determination of titers of metabolic enzymes and enables simultaneous measurements of titers and maximal enzymatic activities (Amax) of all glycolytic enzymes and the gluconeogenic fructose 1,6-bisphosphatase in mouse brain, liver and muscle. Despite occurrence of tissue-specific isoenzymes bearing different kinetic properties, the enzyme titers often correlated well with the Amax values. To provide a more general picture of energy metabolism, we analyzed titers of the enzymes in additional 7 mouse organs and in human cells. Across the analyzed samples, we identified two basic profiles: a "fast glucose uptake" one in brain and heart, and a "gluconeogenic rich" one occurring in liver. In skeletal muscles and other organs, we found intermediate profiles. Obtained data highlighted the glucose-flux-limiting role of hexokinase which activity was always 10- to 100-fold lower than the average activity of all other glycolytic enzymes. A parallel determination of enzyme titers and maximal enzymatic activities allowed determination of kcat values without enzyme purification. Results of our in-depth proteomic analysis of the mouse organs did not support the concepts of regulation of glycolysis by lysine acetylation.
منابع مشابه
Enzyme patterns and the properties of glycolysis in rabbit masseters.
Many quantitative studies [1-6] have been conducted on the regulatory mechanism of carbohydrate metabolism in various mammalian tissues to date. With regard to glycolysis, in particular, BALDWIN et al. [7] analyzed enzyme activity in the skeletal muscles of rats during exercise and EDINTON et al. [8] reported on the quantities of metabolic flux obtained from the metabolic intermediates of glyco...
متن کاملDynamic profiling of the glucose metabolic network in fasted rat hepatocytes using [1,2-13C2]glucose.
Recent studies in metabolic profiling have underscored the importance of the concept of a metabolic network of pathways with special functional characteristics that differ from those of simple reaction sequences. The characterization of metabolic functions requires the simultaneous measurement of substrate fluxes of interconnecting pathways. Here we present a novel stable isotope method by whic...
متن کاملProteomics Profiling of Chimeric-Truncated Tissue Plasminogen activator Producing- Chinese Hamster Ovary Cells Cultivated in a Chemically Defined Medium Supplemented with Protein Hydrolysates
Background: Culture media enrichment through the addition of protein hydrolysates is beneficial for achieving higher protein expression. Methods: In this study, designing the optimum mixture of four soy and casein-derived hydrolysates was successfully performed by design of experiment and specific productivity increased in all predicted combinations. Protein profile of recombinant CHO (rCHO) ce...
متن کاملSorting of metabolic pathway flux by the plasma membrane in cerebrovascular smooth muscle cells.
We used beta-escin-permeabilized pig cerebral microvessels (PCMV) to study the organization of carbohydrate metabolism in the cytoplasm of vascular smooth muscle (VSM) cells. We have previously demonstrated (Lloyd PG and Hardin CD. Am J Physiol Cell Physiol 277: C1250-C1262, 1999) that intact PCMV metabolize the glycolytic intermediate [1-(13)C]fructose 1,6-bisphosphate (FBP) to [1-(13)C]glucos...
متن کاملLarge-scale metabolome analysis and quantitative integration with genomics and proteomics data in Mycoplasma pneumoniae.
Systems metabolomics, the identification and quantification of cellular metabolites and their integration with genomics and proteomics data, promises valuable functional insights into cellular biology. However, technical constraints, sample complexity issues and the lack of suitable complementary quantitative data sets prevented accomplishing such studies in the past. Here, we present an integr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of proteome research
دوره 14 8 شماره
صفحات -
تاریخ انتشار 2015